Grasp that optimises objectives along post-grasp trajectories
نویسندگان
چکیده
In this article, we study the problem of selecting a grasp pose on the surface of an object to be manipulated by considering three post-grasp objectives. These objectives include (i) kinematic manipulation capability [1], [2], (ii) torque effort [3] and (iii) impact force in case of collision [4] during post-grasp manipulative actions. In these works [1]–[4], the main assumption is that a manipulation task, i.e. trajectory of the centre of mass (CoM) of an object is given. In addition, inertial properties of the object to be manipulated is known. For example, a robot needs to pick an object located at point A and place it at point B by moving it along a given path. Therefore, the problem to be solved is to find an initial grasp pose that yields the maximum kinematic manipulation capability, minimum joint effort and effective mass along a given post-grasp trajectories. However, these objectives may conflict in some cases making it impossible to obtain the best values for all of them. We perform a series of experiments to show how different objectives change as the grasping pose on an object alters. The experimental results presented in this paper illustrate that these objectives are conflicting for some desired post-grasp trajectories. This indicates that a detailed multi-objective optimisation is needed for properly addressing this problem in a future work.
منابع مشابه
Optimal Trajectory Planning of a Box Transporter Mobile Robot
This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...
متن کاملThe Effects of Grasp Conditions on Maximal Acceptable Combined Forces (pushing and pinch forces) for Manual Insertion of Snap Fasteners
The objective of this study was to determine the effects of grasp conditions (types of grasp, grasp width, glove and types of coupling) on maximal pushing force (MPF) and required pinch force (RPF) during snap fit assembly. The results indicated that the type of grasp, the type of coupling and wearing gloves have significant (p
متن کاملStereotypical fingertip trajectories during grasp.
The kinematics of movement of all five digits was analyzed during reach-and-grasp tasks for a variety of objects. Ten healthy subjects performed 20 trials involving the grasp of five objects of distinct size and shape. Joint angles were recorded, and digit trajectories were computed using forward kinematics. For a given subject, fingertip trajectories were consistent across trials. The differen...
متن کاملNeural coordination during reach-to-grasp.
When reaching to grasp, we coordinate how we preshape the hand with how we move it. To ask how motor cortical neurons participate in this coordination, we examined the interactions between reach- and grasp-related neuronal ensembles while monkeys reached to grasp a variety of different objects in different locations. By describing the dynamics of these two ensembles as trajectories in a low-dim...
متن کاملGrasp with Path-relinking: Recent Advances and Applications
Path-relinking is a major enhancement to the basic greedy randomized adaptive search procedure (GRASP), leading to significant improvements in solution time and quality. Path-relinking adds a memory mechanism to GRASP by providing an intensification strategy that explores trajectories connecting GRASP solutions and the best elite solutions previously produced during the search. This paper revie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1712.04295 شماره
صفحات -
تاریخ انتشار 2017